Lehrstuhl II für Mathematik Dipl.-Math. Michael Hoschek

7 Eigenvectors and eigenvalues

Definition 1 (Eigenvectors and Eigenvalues). Let $A \in \mathbb{R}^{n \times n}$ be a matrix. A vector $\mathbf{v} \neq \mathbf{0} \in \mathbb{R}^n$ is called eigenvector of A if

$$A\mathbf{v} = \lambda \mathbf{v},$$

for $\lambda \in \mathbb{R}$. λ is called eigenvalue of the matrix A.

Definition 2 (Eigenspace). Let $A \in \mathbb{R}^{n \times n}$ be a matrix with an eigenvalue $\lambda \in \mathbb{R}$. The set

$$V_{\lambda} = \{ \mathbf{v} \in \mathbb{R}^n : A\mathbf{v} = \lambda \mathbf{v} \}$$

is called eigenspace of λ . It is a linear subspace of \mathbb{R}^n .

We can rewrite the condition $A\mathbf{v} = \lambda \mathbf{v}$ as

$$(A - \lambda I_n)\mathbf{v} = 0.$$

To find eigenvectors **v** corresponding to an eigenvalue λ , we solve the homogenous system of linear equations given by

$$(A - \lambda I_n | 0).$$

Theorem 3. Let $A \in \mathbb{R}^{n \times n}$ be a matrix with pairwise distinct eigenvalues $\lambda_1, \dots, \lambda_m \in \mathbb{R}$ and eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ such that $v_i \in V_{\lambda_i}$. Then the vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ are linearly independent.

Definition 4 (Characteristic polynomial). *Let* $A \in \mathbb{R}^{n \times n}$ *be a matrix. The polynomial*

$$\det(A - \lambda I_n)$$

is called characteristic polynomial *of A*. *It is an n*-*th order polynomial with variable* λ *.*

Theorem 5. Let $A \in \mathbb{R}^{n \times n}$ and $p(\lambda) = \det(A - \lambda I_n)$ its characteristic polynomial. The eigenvalues of A are exactly the zeros of p.

Theorem 6 (The Diagonalization Theorem). Let $A \in \mathbb{R}^{n \times n}$. If $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ are linearly independent eigenvectors of A and $\lambda_1, \lambda_2, \dots, \lambda_n$ are their corresponding eigenvalues, then

$$V^{-1}AV = D,$$

where

$$V = (\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}) \in \mathbb{R}^{n \times n}$$

and D is the diagonal matrix

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \lambda_n \end{pmatrix}.$$