Lehrstuhl II für Mathematik http://www.math2.rwth-aachen.de
Dipl.-Math. Michael Hoschek

7 Eigenvectors and eigenvalues

Definition 1 (Eigenvectors and Eigenvalues). Let $A \in \mathbb{R}^{n \times n}$ be a matrix. A vector $\mathbf{v} \neq \mathbf{0} \in \mathbb{R}^{n}$ is called eigenvector of A if

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

for $\lambda \in \mathbb{R}$. λ is called eigenvalue of the matrix A.
Definition 2 (Eigenspace). Let $A \in \mathbb{R}^{n \times n}$ be a matrix with an eigenvalue $\lambda \in \mathbb{R}$. The set

$$
V_{\lambda}=\left\{\mathbf{v} \in \mathbb{R}^{n}: A \mathbf{v}=\lambda \mathbf{v}\right\}
$$

is called eigenspace of λ. It is a linear subspace of \mathbb{R}^{n}.

We can rewrite the condition $A \mathbf{v}=\lambda \mathbf{v}$ as

$$
\left(A-\lambda I_{n}\right) \mathbf{v}=0
$$

To find eigenvectors \mathbf{v} corresponding to an eigenvalue λ, we solve the homogenous system of linear equations given by

$$
\left(A-\lambda I_{n} \mid 0\right)
$$

Theorem 3. Let $A \in \mathbb{R}^{n \times n}$ be a matrix with pairwise distinct eigenvalues $\lambda_{1}, \cdots, \lambda_{m} \in \mathbb{R}$ and eigenvectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{m}$ such that $v_{i} \in V_{\lambda_{i}}$. Then the vectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{m}$ are linearly independent.

Definition 4 (Characteristic polynomial). Let $A \in \mathbb{R}^{n \times n}$ be a matrix. The polynomial

$$
\operatorname{det}\left(A-\lambda I_{n}\right)
$$

is called characteristic polynomial of A. It is an n-th order polynomial with variable λ.
Theorem 5. Let $A \in \mathbb{R}^{n \times n}$ and $p(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$ its characteristic polynomial. The eigenvalues of A are exactly the zeros of p.

Theorem 6 (The Diagonalization Theorem). Let $A \in \mathbb{R}^{n \times n}$. If $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$ are linearly independent eigenvectors of A and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are their corresponding eigenvalues, then

$$
V^{-1} A V=D
$$

where

$$
V=\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right) \in \mathbb{R}^{n \times n}
$$

and D is the diagonal matrix

$$
D=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 \\
0 & 0 & \ddots & & \vdots \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \lambda_{n}
\end{array}\right)
$$

